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We study the critical relaxation of the helix-coil transition in all-atom models of polyalanine chains. We
show that at the critical temperature the decay of a completely helical conformation can be described by scaling
relations that allow us estimating the pertinent critical exponents. The present approach opens a new way for
characterizing transitions in proteins and may lead to a better understanding of their folding mechanism. An
application of the technique to the 34-residue human parathyroid fragment PTH�1-34� supports universality of
the helix-coil transition in homopolymers and �helical� proteins.
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The process by that a protein folds into its biologically
active state is still only partially understood. For instance,
folding of proteins involves transitions between different
thermodynamic states and the nature of these transitions is an
active area of research. Computer experiments provide an
important tool but are extremely difficult for detailed protein
models �1� that are characterized by a rough energy land-
scape with their huge number of local minima.

Considerable effort has been put into the development of
novel sampling techniques that promise to overcome this so-
called multiple minima problem. Successful examples are
generalized-ensemble techniques such as parallel tempering
�2�, a broad-histogram method �3�, or multicanonical sam-
pling �4�. However, these methods rely on an artificial dy-
namics. Here we explore a complementary approach that
leaves the “physical” dynamics unchanged and extracts cru-
cial information from the critical relaxation of regular ca-
nonical simulations. In that sense it may open a new window
on the folding mechanism, a longstanding problem in protein
science. The analysis of such short-time dynamics is known
as a powerful tool in statistical physics �5–8� but applied
here for the first time to proteins.

An important example of folding transitions is the forma-
tion of secondary structure elements such as � helices or �
sheets. In the case of � helices, this process resembles crys-
tallization or melting and has been extensively studied �9�.
Evidence was presented in Ref. �10� that the helix-coil tran-
sition is for polyalanine a true thermodynamic phase transi-
tion. We study in the present paper the nonequilibrium evo-
lution process of �Ala�N chains �N=10, 20, and 40� in short-
time Monte Carlo �MC� simulations. Our investigation is
later extended toward the 34-residue human parathyroid
fragment PTH�1-34�.

During the last years, a better understanding of the critical
relaxation process and universality has been achieved. As
shown by Janssen et al. �11� universality and scaling behav-
ior are already present in the early times of their evolution.
When a system, characterized by an order parameter m, is
prepared in a macrostate m0 at T�Tc and quenched to a
critical temperature T=Tc, its time evolution is �after a mi-
croscopic time tmic� described by a power-law m�t�� t�. This
initial small magnetization m0 increases during a small mac-
roscopic time tmic� t� ti before its expected decay toward
the equilibrium �7�. The new exponent � is independent of
the known set of static exponents and of the dynamical criti-
cal exponent z. Another universal behavior of the dynamic
relaxation process can be obtained with an ordered initial
state m0=1 �12�, which decays at the critical temperature Tc
as t−�/�z. This relation is obtained from the more general
scaling form:

m�t,�,N�b−�/�m�b−zt,b1/��,b−1N� , �1�

where b is an arbitrary chain size scaling factor and � is the
reduced temperature, �= �T−Tc� /Tc. Differentiating ln m�t ,��
with respect to the temperature T at T=Tc,

� � ln m�t,�,L�
��

�
�=0

� t1/�z, �2�

leads finally to a scaling relation that allows one to extract
the exponent 1 /�z �13�. Combining the two scaling relations
allows one to eliminate the dynamic exponent z and calculate
the estimates of the critical exponent �. Further information
on the system can be obtained from the scaling �7� of the
second cumulant,

U2�t,L� =
m2�t,L�

�m�t,L��2 − 1 � td/z. �3�

In the present paper we use Eq. �3� and Eq. �2� to calculate
estimates of the exponent d�.
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The question arises whether the above scaling laws apply
also to transitions in proteins. Strictly speaking, phase tran-
sitions appear only in infinite systems while proteins are fi-
nite systems. However, for a spin system the signal for a
phase transition is often found already at a small system size.
Similar sharp transitions are observed in proteins. One ex-
ample is the formation of � helices. In Ref. �14� we have
analyzed for the solvated molecule the scaling of the specific
heat and found for the helix-coil transition critical exponents
compatible with �=0 and 	=0. It is because of these previ-
ous results that we decided to choose the helix formation as
a test case.

Crucial for our analysis is the definition of an order pa-
rameter. Our analog to the magnetization in spin systems is
the number of helical residues qH=2� �nH�T�� / �N−2�−1.
Here we define a residue as helical if its backbone dihedral
angles �
 ,�� take values in the range �−70° ±30° ,
−37° ±30° � �their common values in an � helix�, and the
residue exhibits the hydrogen bonding pattern observed in �
helices. The normalization factor N−2 �N the number of resi-
dues� is chosen because the flexible terminal residues are
usually not part of an � helix. Our definition ensures that
−1�qH�1 and qh�Tc�=0.

Our short-time MC simulations of the helix-coil transition
are based on a detailed, all-atom representation of proteins.
The interaction between the atoms is described by a standard
force field, ECEPP/2 �15� �Empirical Conformational Energy
Program for Peptides, version 2� �15� as implemented in the
program package SMMP �Simple Molecular Mechanics for
Proteins� �16�. The interactions between our polypeptides
and surrounding water are approximated by means of an im-
plicit water model, which assumes that the solvation �free�
energy is proportional to the solvent accessible surface area
and utilizes the parameter set of Ref. �17� that is often used
in conjunction with the ECEPP force field.

We started our investigation by simulating polyalanine
chains of length N=10, 20, and 40. Our results are averaged
over 2000 independent runs for N=10, 20, and 500 runs for
N=40. Errors are estimated by dividing these 2000 �500�
runs in bins of 100 �50� runs and calculating the fluctuation
of the averages obtained for each bin. Figure 1 displays for
various temperatures the time series of our order parameter
qh as a function of the Monte Carlo time for Ala40. We expect
to see in such a log-log plot that curves of qH corresponding
to low temperatures approach a constant value while high-
temperature curves are characterized by an exponential de-
crease of qH. Both temperature regions are separated by the
critical temperature Tc at which the corresponding curve
should be a straight line �in the scaling region�. Our plot
indicates as critical temperature Tc

40=470 K. Similar plots
lead to Tc

10=315 K and TC
20=415 K for Ala10 and Ala20 �data

not shown�.
The estimates of the critical temperatures are for N=10

and N=20 lower than the ones presented in Ref. �14�: Tc
10

=333�2� K and Tc
20=430�2� K. Hence, for both chain sizes

the estimates obtained from a short-time analysis seems to be
lower by 	15 K than the ones estimated from the peak in
specific heat. No value is given in Ref. �14� for N=40. Ex-
trapolating the listed values, including Tc

30=461�3�, our value

of Tc
40=470 K seems reasonable. Note that for a small sys-

tem size the the critical temperature as derived from the
change in magnetization differs in spin systems also often
from the peak in specific heat. Only for large system size is
it expected that both values converge. We finally remark that
our numbers are calculated from a set of 2000 �500 for N
=40� independent runs while the results of multicanonical
runs in Ref. �14� only rely on order 	10 independent events.

Note that the scaling is similar for all chains. This can be
seen from the inset of Fig. 1, which displays for T=Tc the
time series of the order parameter for all three chain lengths.
We focus here on the linear range and show both the mea-
sured data points and the straight line that best fits these data.
The data for the different chain sizes are almost parallel to
each other. From the apparently size-independent slope of
these lines, we can obtain an estimate of � /�z. Measuring, in
addition, the slope for slightly higher �lower� temperatures
and calculating the numerical derivative leads, in addition, to
an estimate for 1 /�z. Finally, estimates of the ratio d /z can
be extracted from the scaling of U2�t ,L�, which is shown for
the three polyalanine molecules in Fig. 2. Table I lists the
values of all three ratios � /�z, 1 /�z, and d /z, together with
the exponents � and d� extracted from them.

In Ref. �14� it was found that �=		0 and d�	2. This
implies �	1. Our values for the critical exponent �	0.4 in
Table I are significantly lower than one, but clearly exclude
also �=0, the value expected for a first order transition. A
similar statement holds for d�	1.4 that is much smaller than
two, but also excludes a first-order transition �d�=1�. Note
also that the error bars in Ref. �14� are large and do not
exclude our estimates of � and d�. Hence, our data support
the claim in Ref. �14� that the helix-coil transition in alanine
is second-order like. This is different in the gas phase, where
the helix-coil transition is of first order �10�.

FIG. 1. Log-log plot of the time series of the helical order pa-
rameter qH �defined in the text� as a function of Monte Carlo time
for polyalanine chains of length N=40. The temperatures are �from
top to bottom�: T=420,460,470,480 K and T=500 K. The inset
displays qH for all three polyalanine chains �N=10, 20, or 30� as
measured at their respective critical temperatures. Shown are the
data in the scaling region and the best fit through them.
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Up to this point we have studied the helix-coil transition
in a system where critical exponents can be determined by
other techniques, as well. This allowed us to compare our
results with previous work, and we found qualitative agree-
ment. However, unlike homopolymers, proteins have unique
sequences. Hence, an extrapolation to infinite chain length is
not a meaningful concept, and a finite size scaling analysis is
not possible. In this sense, short-time analysis opens a way to
characterize transitions in proteins, too.

We have checked this assumption for the peptide frag-
ment PTH�1-34� corresponding to residues 1-34 of human
parathyroid hormone �18,19�. The structure of PTH�1-34�
has been resolved both crystallized �18� and in solution �19�
and is at room temperature almost completely helical. In pre-
vious work �20�, using the same energy function it was
shown that PTH�1-34� exhibits at T=560�10� K a sharp tran-
sition between a high temperature region where disordered
coil structures prevail, and a low temperature region that is
characterized by mostly helical structures. The nature of this
helix-coil transition could not be established in Ref. �20�.
Here, we revisit this peptide and study now the short-time
dynamics of this helix-coil transition. Our data were obtained
for temperatures T=500,520,530,540,550, and 560 K and

rely on 150 runs. Figure 3 displays our order parameter for
those temperatures as a function of the Monte Carlo time.
From the plot we estimate that the critical temperature is T
=540�10� K, a value that is again slightly smaller than the
obtained from the peak in specific heat. The scaling region is
shown for this temperature in the inset, with both the data
point and the best straight-line fit though them. From this fit
we obtain exponents � /�z and 1/�z �listed in Table I� that
are slightly smaller than the ones obtained for polyalanine,
while the ratio d /z agrees for both molecules. Correspond-
ingly, our value for the critical exponent �=0.33�1� and d�
=1.54�1� are comparable with �=0.38�1� and d�=1.40�1�,
the values found for polyalanine. These exponents indicate
again a second-order transition albeit its folding into its he-
lical structure �where it is biologically active� is quick and
appears to have two-state character. The similarity of the
exponents suggests “universality” of the helix-coil transition
in homopolymers and �helical� proteins.

In summary, we have studied the short-time dynamics of
helix-coil transitions in polypeptides. At the critical tempera-
ture, the decay of a completely ordered state can be de-
scribed by scaling relations involving certain �critical� expo-
nents. Comparing for polyalanine, these exponents with the
ones obtained by other methods we find qualitative agree-
ment. Similar exponents are also found for PTH�1-34�, a
polypeptide with a unique sequence for which finite-size
scaling is not a meaningful concept. The close values of the
critical exponents suggests “universality” of the helix-coil
transition in protein-like polymers. These results indicate that
the analysis of short-time dynamics is not restricted to spin
systems, but of a much larger applicability. Especially,
it adds a valuable new tool to the investigation of the
folding mechanism in proteins, a longstanding problem in
biophysics.

FIG. 2. Log-log plot of the time series of the second moment
F2�t ,L� for polyalanine chains of length N=10, 20, or 30 and the
polypeptide PTH�1-34� as measured at their respective critical tem-
peratures. Shown are the data in the scaling region and the best fit
through them.

TABLE I. Exponents as obtained for polyalanine chains of
length N=10, 20, and 40 from the scaling relations of Eqs. �1�–�3�.
The last two columns list the critical exponents � and d�, as calcu-
lated from these quantities. The last row summarizes the results for
the polypeptide PTH�1-34�.

N � /�z 1/�z d /z � d�

10 0.30�1� 0.767 �4� 1.1�1� 0.40�1� 1.42�1�
20 0.30�1� 0.779 �9� 1.1�1� 0.38�1� 1.41�1�
40 0.30�2� 0.78 �1� 1.1�2� 0.38�1� 1.40�1�

PTH 0.22�3� 0. 68�1� 1.1�3� 0.33�1� 1.54�1�

FIG. 3. Log-log plot of the time series of the helical order pa-
rameter qH as a function of Monte Carlo time for the polypeptide
PTH�1-34� measured at temperatures T=500, 520, 530, 540, 550,
and 560 K. The inset shows the data for the critical temperature
Tc=540 in the scaling region, with the best fit also drawn through
them.
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